Triangle
Given a triangle, find the minimum path sum from top to bottom. Each step you may move to adjacent numbers on the row below.
For example, given the following triangle
The minimum path sum from top to bottom is
Note:
Bonus point if you are able to do this using only O(n) extra space, where n is the total number of rows in the triangle.
*/For example, given the following triangle
[
[2],
[3,4],
[6,5,7],
[4,1,8,3]
]
The minimum path sum from top to bottom is
11 (i.e., 2 + 3 + 5 + 1 = 11). Note:
Bonus point if you are able to do this using only O(n) extra space, where n is the total number of rows in the triangle.
class Solution {
public:
int minimumTotal(vector<vector<int> > &triangle) {
// Start typing your C/C++ solution below
// DO NOT write int main() function
int rowSize = triangle.size();
if(rowSize==0) return 0;
int const bigValue = 200;
int lineMin = bigValue;
int j;
for(int i=0; i<rowSize; i++){
if(triangle[i].size()!=(i+1)) return 0;
if(i>0){
for(j=0; j<(i+1); j++){
lineMin = bigValue;
if(j<triangle[i-1].size())
lineMin = min(triangle[i-1][j] + triangle[i][j], lineMin);
if(j>=1){
lineMin = min(triangle[i-1][j-1] + triangle[i][j], lineMin);
}
triangle[i][j] = lineMin;
}
}
}
lineMin = bigValue;
for(j=0; j<triangle[rowSize-1].size(); j++){
lineMin = min(lineMin, triangle[rowSize-1][j]);
}
return lineMin;
}
};
No comments:
Post a Comment